federal energy management program

Sustainable Technologies on the Horizon

Fort Carson Sustainability Conference November 9, 2005

Chandra Shah, NREL 303-384-7557, chandra_shah@nrel.gov

U.S. Department of Energy Energy Efficiency and Renewable Energy Renewable Energy Renewable Energy Renewable Energy Renewable Energy Renewable Energy

Renewable Energy Cost Trends

Levelized cents/kWh in constant \$20001

Source: NREL Energy Analysis Office

Updated: June 2002

Photovoltaics (PV) Basics

- PV converts sunlight directly to electricity
- Building-Integrated Photovoltaics (BIPV) Systems where PV elements are integral part of the building & replace part of building skin costs
- Turnkey Cost = \$6-\$20/watt. Cost considerations:
 - Resource quality
 - Type of PV panel
 - Significant costs (50% or greater) for Balance-of-System (BOS)
 components & installation
 - Additional cost for back-up battery
 - Available incentives (see http://www.dsireusa.org/)
 - Cost of alternatives (utility rates, diesel, utility line extension, etc)

PV/BIPV Examples

PV Lighting PJKK Federal Building, HI

BIPV, Mauna Lani Hotel

BIPV 4 Times Square, NY City (Broadway & 42nd Street)

Naval Air Station N. Island

924 kW PV system providing shaded parking for 444 vehicles.

Solar Hot Water (SHW)

Low temperature system

- Unglazed mats
- Glazed and insulated

Flat-Plate Collector Glazing frame Glazing Outlet connection Enclosure Flow tubes Absorber plate Insulation

Residential hot water Swimming pools

Medium temperature system

Evacuated tubes

Cafeterias Laundries

High temperature system

ParabolicConcentrators

Industrial processes Electrical generation

Federal SHW Examples

USCG Kia'i Kai Hale Housing Area, Honolulu, HI

EPA Edison, New Jersey

Barnes Field House, Fort Huachuca, AZ

Correctional Institution

http://www.eere.energy.gov/femp/pdfs/33211.pdf

"Solar Wall"

- High ventilation requirements
- New construction
- Retrofit available <u>south</u> wall area with fan intake

Concentrating Solar Power

- Concentrating Solar Power (CSP) Operation
 - Concentrates & focuses sunlight onto receiver mounted at system's focal point
 - Receiver absorbs sunlight and heats working fluid
 - Working fluid used in engine to produce electricity
- Requires a very good, direct solar resource
- Technologies
 - Parabolic Troughs
 - Dish/Engine Systems
 - Power Towers
- Western Governor's Association (WGA) 30GW of clean energy by 2015 goal, including 1 GW CSP

Dish Stirling

Trough Mojave Desert, California

Solar One Power Tower Daggett, California

Research Focus in Solar

- Higher efficiency devices
- New nanomaterials applications
- Cheaper material
- Advanced manufacturing techniques & lower production costs
- Concentrating PV
- Bottom line reduce ¢/kWh

Advanced "3rd-Generation" Solar

- I. 1st Generation Crystalline
 - E Expensive & low efficiency
- II. 2nd Generation (Polycrystalline Thin Film)
 - E Cheaper, but still low efficiency

III. 3rd Generation

- Ξ Multi-junction cells (>30% efficiency)
- Ξ Quantum dots (>60% efficiency)

Region III indicates efficiencies higher than previous theoretical limits, at lower costs, made possible by nanostructures such as quantum dots

Wind Power

Resource:

Wind power is created by the uneven heating of the earth's surface by the sun.

Energy production is proportional to wind speed cubed (V^3)

-Wind speed increases with height

Technologies:

- Small turbines (100 kW and smaller)
- Large turbines (100 kW to 5 MW)

Growth of Wind Energy Capacity Worldwide

Sources: BTM Consult Aps, March 2003 Windpower Monthly, January 2004 *NREL Estimate for 2004

U.S. Department of Energy Efficiency and Renewable Energy Federal Wind Examples

Research Focus in Wind

Technology transfer to ocean-based systems

• Low-wind speed turbines (LWST)

• Better aerodynamic blades, new materials

Advanced power electronics

Biomass Issues/Research

New feedstocks - advanced energy crops, under-utilized waste

- Feedstock issues
 - Crop production cycle
 - Drying and storage potential degradation problems
 - Transportation
 - Varying feedstock characteristics
- "Biorefinery Concept"
 - Thermochemical conversion process such as gasification
 - Biochemical conversion process fermentation of sugars extracted from biomass feedstocks

Hydrogen Research Example

Photoelectrochemical-Based Direct Conversion Systems

- Produce hydrogen directly from water using sunlight
- Combine PV system and an electrolyzer
- Balance of system costs reduced
 - Capital cost of electrolyzer eliminated
- Efficiency 30% higher than separated system

Renewable Power Purchasing Options

- Regulated Utility Green Pricing
- Competitive Electricity Market
- Renewable Energy Certificates (REC)
 - Renewable attributes unbundled from physical, "generic" electricity

Why Use Renewables?

- Volatile energy market price risk management
- Reduce dependence on fossil fuel imports –
 "homegrown" energy instead
- Fuel diversity
- Water
- Economic development
- Market transformation
- Lead by example
- Demonstrate environmental stewardship

Energy Requires Water

Water used to produce household electricity exceeds direct household water use

GALLONS PER PERSON PER DAY

- 510 for food production
 - includes irrigation and livestock
- 465 to produce household electricity
 - Range: 30 to 600 depending on technology
 - 100 direct household use
 - includes bathing, laundry, lawn watering, etc.

Source: derived from Gleick, P. (2002), World's Water 2002-2003.

http://drought.unl.edu/dm

Author: R. Heim/L. Love-Brotak, NOAA/NESDIS/NCDC

http://drought.unl.edu/dm

Humanity's Top Ten Problems for next 50 years

- ENERGY
- WATER
- 3. FOOD
- 4. ENVIRONMENT
- POVERTY
- 6. TERRORISM & WAR
- 7. DISEASE
- 8. EDUCATION
- DEMOCRACY
- 10. POPULATION

2003 6.3 Billion People 2050 9-10 Billion People

Source: Nobel laureate, Richard Smalley